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Abstract

Hypoxia-inducible factor (HIF)—an oxygen sensor? The HIF–oxygen sensing association type of dogma is, unequivocally,

well anchored. But this is only one face of, at least, a double-sided coin. Current concepts charge HIF of taking sides with a yet

not well-founded identity—an immunologic sensor and/or regulator. Or, is it really a sensor, put it more correctly, a key player

in sensing mechanisms? The evolving association between HIF and immunity emanates from an established linkage that bonds

oxidative stress and inflammation—notably the dbiologic response modifiersT, or cytokines. HIF is a redox(y)-sensitive

transcription factor, and so are cytokines. Recently, cytokines emerged as major regulators of HIF, under physiologic conditions

extending the realm of hypoxia. Alternatively, can HIF, like the so infamous inflammatory transcription factor NF-nB, prove
itself as a key player in the regulation of cytokines and, subsequently, the inflammatory process. The targeting of HIF would be,

at least theoretically, of therapeutic value, but does it make sense given its intricate role in hypoxia signaling? It is the theme of

HIF being an immunologic sensor that will be explored therein—with special emphasis on the regulatory role of cytokines.
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1. Introduction

1.1. Hypoxia-inducible factor (HIF)—an oxygen

sensor and master regulator

Unicellular and multicellular organisms have mech-

anisms for sensing oxygen concentrations [1–5], and

for responding to low oxygen levels (hypoxia), with

changes in gene expression [6–11]. The transcription

factor hypoxia-inducible factor 1 (HIF-1) is one of the

master regulators of oxygen homeostasis [12–18]. HIF-

1 is required for the development of key physiological

systems, such as vasculogenesis and pneumogenesis,

during fetal and postnatal life [19–22]. HIF-1 also

regulates the physiological responses to hypoxia [23–

27] and the pathophysiology of heart attack, cancer,

stroke, rheumatoid arthritis, chronic lung disease and

other syndromes [28–35].
1.1.1. Basic biochemistry of HIF—an overview

HIF-1a is a basic-helix-loop-helix-PAS (bHLH-

PAS) protein [36–40]. It is an obligatory component

of HIF-1, which exists as a heterodimer of HIF-1a (an

826 amino acid protein) and another bHLH-PAS

protein, the aryl-hydrocarbon receptor nuclear trans-

locator (HIF-1h, ARNT) [36,37,41,42]. ARNT pro-

motes oxygen-independent stabilization of HIF-1a

[41–45]. HIF-1a and HIF-1h belong to a larger family

of transcription factors that contain bHLH and PER-

ARNT-SIM homology domains.

The bHLH and PAS domains comprise the N-

terminal halves of both HIF-1a and ARNT, which are

required for dimerization and DNA binding [17]. The

C-terminal half of both proteins is required for

transactivation. In the case of HIF-1a, its trans-

activation domains are localized to two amino acid

residues 531–575 (N-terminal TAD) and 786–826 (C-
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terminal TAD), which are separated by an inhibitory

domain [15–18]. Two nuclear localization signals

(NLSs) are localized to the N-terminal (amino acids

17–74) and the C-terminal parts (amino acids 718–

721). The C-terminal NLS motif of HIF-1a plays a

crucial role in mediating hypoxia-inducible nuclear

import of the protein, whereas the N-terminal NLS

motif may be less important [17]. In addition, HIF-1a

contains an oxygen-dependent degradation (ODD)

domain, which is localized to amino acid residues

401–603 [37–40]. The ODD domain is suggested to

control HIF-1a degradation by the ubiquitin-protea-

some pathway because its deletion makes HIF-1a

stable even under normoxic conditions.

1.1.2. Survey of HIF subunits and isoforms

In addition to the ubiquitously expressed HIF-1a,

two other members of this family, HIF-2a and HIF-3a,

were identified that show a more restricted tissue

expression pattern (Ref. [6] and references therein).

Functional comparison between HIF-1a and HIF-2a in

vitro revealed similarities concerning genomic organ-

ization, modular protein structure, hypoxic protein

stabilization, heterodimerization with ARNT, DNA

recognition, DNA binding, and trans-activation of

reporter genes [6]. The three HIFa subunits show

partially overlapping expression patterns in vitro and in

vivo. Thus, HIF-2 and HIF-3 potentially might interact

with the DNA binding site of HIF-1 target genes.

Class I members of this family, such asHIF-1a, HIF-

2a andHIF-3a [6], heterodimerize with one of the class

II sub-family such as ARNT1, ARNT2 and ARNT3,

resulting in different DNA-binding and transcriptional
Fig. 1. Schematic representation of human HIF-1a, HIF-2a, and ARNT. H

Sim (bHLH-PAS) proteins that contain an N-terminal bHLH domain and tw

degradation domain (ODD) that mediates oxygen-regulated stability, and

repression in normoxia is controlled by the inhibitory domain (ID). ARNT

context of HIF-a activity. Amino acid numbers for each domain are indic
properties depending on the dimer formation [46–49].

HIF mRNA is expressed in human and rodent tissues

[50–52]. HIF-2a, HIF-3a, ARNT2 and ARNT3 are

restricted to certain tissues, and therefore have a more

specialized role in oxygen homeostasis [53–60].

Schematic representation of HIF-1 isoforms and

ARNT is depicted in Fig. 1.

1.1.3. HIF-ARNT subunit interactions and

modifications

Whereas HIF-1h is constitutively expressed, the

expression of HIF-1a is induced by hypoxia [61–65].

Under non-hypoxic conditions, HIF-1a is hydroxy-

lated by a prolyl hydroxylase enzyme [66–68]. This

modification is required for the binding of the von

Hippel-Lindau (VHL) protein to HIF-1a and its

subsequent ubiquitination and degradation in the

proteasome [69–82]. Iron chelators and cobalt chloride

prevent HIF-1a ubiquitination besides inducing its

expression [83–86].

HIF heterodimers bind to the hypoxia response

element (HRE), a 5V-RCGTG-3V consensus sequence

[87,88]. Several HIF-1-regulated genes have been

identified, including genes coding for proteins

involved in angiogenesis, energy metabolism, eryth-

ropoiesis, cell proliferation and viability, vascular

remodeling and vasomotor responses, oxidative stress

and inflammation [89–94].

1.1.4. Oxidant-mediated regulation of HIF

1.1.4.1. Oxygen physiology. The heterogeneous

partial pressure of oxygen ( pO2) distribution in tissue
IF-1a, HIF-2a, and ARNT are basic-Helix-Loop-Helix-Per-ARNT-

o PAS domains. HIF-1 and HIF-2 also contain an oxygen-dependent

a C-terminal transactivation domain (CAD) whose transcriptional

has a transactivation domain (TAD) that serves no function in the

ated. Adapted, with the courtesy of Dr. Anthony Fedele [192].
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ranging from about 0 to 90 Torr at a constant arterial

pO2 of about 100 Torr (1 Torr=1 mm Hg at 0 8C)
requires an oxygen-sensing system to optimize

specific organ functions [2,3,9,35]. Cells located at

the arterial inflow have other metabolic properties or

electrical activities than cells located at the venous

end. To meet the needs for such different functions, an

oxygen sensor has to control short- and long-term

adaptation of cellular functions via regulation of ion

channel conductivity and gene expression [2,4,6,35].

Oxygen is the final acceptor of electrons in the

synthesis of ATP by the mitochondrial respiratory

chain and is, therefore, an obligatory substrate for

energy transformations in most biological systems

[6,35,64,65]. A reduction in the level of oxygen in the

extracellular milieu severely limits the ability of cells

to perform energy-dependent functions and, if hypo-

xia is severe enough, it can lead to cell death [9,11]. It

is, therefore, not surprising that elaborate mechanisms

have evolved which allow cells to detect changes in

oxygen tension and protect them against hypoxia [9].

The long-range goal of biomedical research is to

identify the molecular and cellular mechanisms by

which cells detect changes in oxygen tension and how

this signal is transduced into the nuclear events

responsible for altered gene expression during hypo-

xia [5–11]. Altered gene expression is essential for

development of a hypoxia-tolerant phenotype, which

is more resistant to cell damage or death.

1.1.4.2. Hypoxia and gene expression. Although

numerous stimuli have been identified which regulate

gene expression, perhaps none is more intriguing than

hypoxia [6,9]. Hypoxia-induced gene expression has

been implicated in a number of physiological pro-

cesses, including erythropoiesis, carotid body chemo-

receptor function, and angiogenesis, all of which

enhance the delivery of oxygen to tissue [5–10]. Genes

involved in mediating each of these important pro-

cesses are normally activated by long-term (hours to

days) rather than acute (seconds tominutes) episodes of

hypoxia [11].

An important transcription factor that is a crucial

regulatory element in sensing hypoxic conditions

and integrating an adaptive response via gene

expression of oxygen-sensitive enzymes and cofac-

tors is HIF-1 (Fig. 2). The signal transduction

components which link the availability of oxygen
to the activation of these transcription factors are

poorly defined, but are broadly believed to hinge on

the free abundance of oxidants (i.e., reactive oxygen

species [ROS]) in the cytosol [35]. In the case of

HIF-1a, post-translational stability, nuclear trans-

location by ARNT and consensus DNA binding

are coupled with oxygen-associated changes in both

conformation and activity of a ferroheme containing

protein, believed to express peroxide generation via

a NADPH oxidase-type activity [14,36,44]. Hypoxic

cessation of peroxide production, for instance,

mediates HIF-1a stabilization, nuclear translocation

and gene expression [6,35].

Adaptive responses to hypoxia, therefore, involve

the regulation of gene expression by HIF-1a, whose

expression, stability and transcriptional activity are

reported to increase exponentially on lowering pO2

[11,61,62,64,65]. During hypoxia, multiple systemic

responses are induced, including angiogenesis, eryth-

ropoiesis and glycolysis. HIF-1a is a crucial mediator

for increasing the efficiency of oxygen delivery

through EPO and VEGF [6,35]. A well-controlled

process of adaptation parallels this mechanism with

decreased oxygen availability through expression and

activation of glucose transporters and glycolytic

enzymes. EPO, for example, is responsible for

increasing blood oxygen-carrying capacity by stim-

ulating erythropoiesis, VEGF is a transcriptional

regulator of vascularization and glycolytic transporters

and enzymes increase the efficiency of anaerobic

generation of ATP, the vital biological currency. It is

expected that any reduction of tissue oxygenation in

vivo and in vitro would, therefore, provide a mecha-

nistic stimulus for a graded and adaptive response

mediated by HIF-1a [6,9,60–65].

1.2. HIF–an immunologic sensor or an

immune-manipulated transcription factor?

The intricate relationship existing between HIF and

oxygen sensing indicates a likely potential for the

regulation of immunologic responses, such as inflam-

mation, especially in light of the fact that oxidative

stress and reduction–oxidation (redox) perturbations

are involved with the evolution of inflammatory-

related stresses [35,61,62,95–97].

HIF-1a may play an important role not only in

regulating the transcription of pO2-controlled genes



Fig. 2. HIF signaling pathways. The primary molecular mechanism of gene activation during hypoxia is through HIF-1. Several genes involved

in cellular differentiation are directly or indirectly regulated by hypoxia. These include EPO, LDH-A, ET-1, transferrin, transferrin receptor,

VEGF, Flk-1, Flt-1, platelet-derived growth factor-h (PDGF-h), basic fibroblast growth factor (bFGF), and others genes affecting glycolysis.

HIF-1 is a member of the basic helix-loop-helix (bHLH)-PAS family of transcription factors known to induce gene expression by binding to a

~50-bp HRE containing a core 5V-ACGTG-3V sequence. bHLH-PAS proteins heterodimerize to form transcription complexes that regulate O2

homeostasis, circadian rhythms, neurogenesis, and toxin metabolism. Three bHLH-PAS proteins in vertebrates respond to hypoxia: HIF-1,

EPAS (HIF-2), and HIF-3. These dimerize with aryl hydrocarbon receptor nuclear translocator protein (ARNT), ARNT-2, or ARNT-3. HIF-1 is

ubiquitinated and subsequently degraded in less than 5 min under normoxic conditions. Although several candidate O2-sensing molecules have

emerged in the literature, the molecular basis of how cells sense O2 levels is poorly characterized. pVHL, the protein product of a tumor-

suppressor gene responsible for von Hippel Lindau disease, is implicated in this O2-sensing system by its association with HIF-1, targeting it for

ubiquitin-mediated degradation. Similarly, F-box-containing proteins recognize substrates of the ubiquitin ligases, targeting them for

phosphorylation-dependent ubiquitination and proteosomal degradation. In addition to F-boxes, most of these proteins also contain a WD40 or a

leucine-rich repeat (LLR) domain that presumably functions as a Ser/Thr binding module. A second family of proteins assisting the ubiquitin

ligases share a region designated SOCS-box (originally from the suppressor of cytokine signaling proteins SOCS). Under low O2, HIF-1 is

stabilized leading to the formation of a functional transcription factor complex with ARNT. This complex is the master regulator of O2

homeostasis and induces a network of genes involved in angiogenesis, erythropoiesis and glucose metabolism. Adapted, with the courtesy of Dr.

Kosi Gramatikoff, Abgent, San Diego, CA, USA.
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and energy homeostasis, but also in influencing

immune responses [89–98]. However, the mechanism

of cytokine-dependent regulation of the translocation
and activation of HIF-1a is being explored. The

question is: dIs cytokine-dependent regulation of HIF

oxidant-sensitive or oxidant-mediated?T
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Cytokines act as major participants in mediating

molecular responses in physiology and pathophysi-

ology. There is accumulating evidence suggesting

that the conventionally known dpro-inflammatoryT
cytokines can act as oxygen-sensitive mediators,

indicating the potential to integrate oxygen-linked

pathways mediated by cytokines via ROS-dependent

mechanisms [64,65].

ROS, for instance, can induce pro-inflammatory

cytokine biosynthesis and this response can be

abrogated by selective antioxidants, suggesting an

integral role of endogenous ROS [6,35,98]. As such,

cytokines could form a pivotal link in ROS-dependent

pathways leading to the activation of redox-sensitive

transcription factors, such as HIF-1a, whose upregu-

lation determines the specificity of cellular responses

to oxidative stress.

Recent investigations have revealed a novel role for

ROS signaling in mediating a non-hypoxic effect of

cytokines on HIF-1a stabilization, nuclear transloca-

tion and activation during normoxia (see discussion

below). Despite the fact that HIF-1awas recognized as

a transcriptional activator prevailing under hypoxic

conditions, ROS signaling pathways that mediate the

regulation of HIF-1a have only recently emerged.

Consistent with this notion, it was reported that a non-

hypoxic pathway mediating the effect of cytokines in

regulating the stabilization, translocation and activa-

tion of HIF-1a in a ROS-sensitive mechanism [35].

These results suggest that hypoxia may not be the only

major player in HIF-1a regulation and that this

pathway mediated by inflammatory cytokines may

play a major role in controlling HIF-1a regulation in a

non-hypoxic environment.

The concept, therefore, has been put forward that

ROS and phosphorylation/dephosphorylation events

are master regulators of HIF-1a induction and activa-

tion; however, the underlying pathways and potential

signaling mediators likely to be implicated have yet to

be unravelled. Regarding the mechanism of non-

hypoxic, ROS-dependent regulation of HIF-1a, a

major role for mitochondrial ROS generated at com-

plex III site was reported, thereby causing the

accumulation of HIF-1a protein, ostensibly responsi-

ble for the initiation of gene expression (reviewed in

Ref. [35]).

Furthermore, depletion of the mitochondrial

genome has been shown to reverse ROS-mediated
induction of HIF-1a (reviewed in Ref. [1]). In addition,

it has been reported that HIF-1a-dependent transcrip-

tional activity in the induction of VEGF expression has

defined a novel hypoxia-independent mechanism

regulating vascular remodeling. Further a field, recent

evidence suggested that the reactive nitrogen species

(RNS) pathway regulates the stability and activity of

HIF-1a. For instance, it was shown that the expression

of nitric oxide (NO) synthase could cause HIF-1a

accumulation, thus underscoring the role of NO as an

intracellular activator of this transcription factor [35].

During inflammation, cytokines, including TNF-a

and IL-1h, transiently activate neutrophils and macro-

phages, thereby causing enhanced production of O2
�d

possibly via the activation of NADPH oxidase. This

oxidative burst involves a rapid but transient release

of ROS as a crucial part of the defense mechanisms

against invading microbial pathogens and tumor cell

metastasis [35,98–113].

Accumulating evidence indicated that cytokines can

increase mitochondrial ROS generation, suggesting

that their effect could be mediated through a ROS-

sensitive mechanism [105,108]. The results reported by

Haddad et al. [35,108] indicate a potential role for

cytokines in inducing the accumulation of intracellular

ROS, thereby reinforcing the notion that these medi-

ators exert their effect on transcription factors including

HIF-1a through a ROS-dependent mechanism.

Regarding the likely source of ROS production

engendered by cytokines, at least two sources may be

involved: (i) the membrane-bound NADPH oxidase

and (ii) the mitochondrial respiratory chain. Although

ROS, in general, may be involved in mediating the

effect of cytokines on HIF-1a induction, the latter

mechanism probably predominates because blockade

of mitochondrial respiration abrogates cytokine-

dependent activation of HIF-1a. Furthermore, evi-

dence is provided that different ROS species (O2
�d ,

d OH and H2O2) may mediate the effect of cytokines on

HIF-1a stabilization, localization and activation

[6,9,35].

The observation that a non-hypoxic pathway

mediates the effect on HIF-1a involves ROS gen-

erated within the mitochondrial complex is supported

by unequivocal evidence since diphenylene iodonium

(DPI), an inhibitor of complex I nicotinamide adenine

dinucleotide phosphate-dependent oxidase (which

blockades the conversion of ubiquinoneYubiquinol),



 

 
 

Fig. 3. The role of hypoxia signaling pathways in the regulation of HIF-1 and HIF-1-dependent gene transcription (see text for further

discussion) (see Ref. [35]).
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abrogates cytokine-mediated activation of HIF-1a,

indicating a crucial role for mitochondria-derived

ROS in HIF-1a signalling [108].

Although it has been suggested that ROS mediate

their signaling by affecting kinases and/or phospha-

tase activities, the downstream pathway(s) affected by

ROS, which govern HIF-1a translocation/activation,

have yet to be precisely identified. It is concluded,

therefore, that the production of ROS is clearly

involved in cytokine-mediated normoxic regulation

of HIF-1a stabilization, translocation and activation

[35,108].

The underlying mechanisms are being explored,

but essentially hinge around the ability of HIF to

mediate transcriptional control over many genes

closely related to the regulation of the inflammatory

milieu [95–98]. Whether HIF may well act as an
immunologic sensor or is indirectly regulated by

mediators of the immune response will likely shape

the identity of this transcription factor not only as an

oxygen sensor but also a mediator of immunity and

inflammatory responses.

Schematic representation of the role of various

cofactors in mediating the regulation of HIF is depicted

in Fig. 3.
2. Cytokines, immunity and HIF regulation

2.1. HIF and inflammation–role for NF-jB and other

inflammatory mediators

The role of HIF in oxidant-induced inflammation is

less clear than that of other transcription factors, such
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as the nuclear factor-nB (NF-nB) [99–104]. However,
direct and indirect, yet unprecedented and unequivocal,

evidence was recently established to implicate HIF as a

possible regulator of the evolution and propagation of

the inflammatory process [90,95,105–111].

This bears particular relevance in knockouts.

Granulocytes and monocytes/macrophages of the

myeloid lineage are the chief cellular agents of innate

immunity. For instance, Cramer et al. [112] have

examined the inflammatory response in mice with

conditional knockouts of HIF-1a, its negative regu-

lator VHL, and a known downstream target, VEGF.

The activation of HIF-1a is essential for myeloid cell

infiltration and activation in vivo through a mecha-

nism independent of VEGF. In addition, loss of VHL

leads to a large increase in acute inflammatory

responses. These results show that HIF-1a is essential

for the regulation of glycolytic capacity in myeloid

cells: when HIF-1a is absent, the cellular ATP pool is

drastically reduced. The metabolic defect results in

profound impairment of myeloid cell aggregation,

motility, invasiveness, and bacterial killing [112]. This

role for HIF-1a demonstrates its direct regulation of

survival and function in the inflammatory micro-

environment [112,113].

The original report (discussed below) to relate HIF

with inflammation and inflammatory mediators

emerged with the role reported for interleukin (IL)-

1h and tumor necrosis factor (TNF)-a in stimulating

the DNA binding of HIF-1 [105]. Moreover, a role for

HIF-1 in mediating the transcriptional activation of

ceruloplasmin by iron deficiency, suggested its

involvement in hemorrhage, renal failure, sickle cell

disease, pregnancy and inflammation [114].

Consistent with the observations reported on HIF

relation with inflammation, IL-1 induced HIF-1 in

human gingival and synovial fibroblasts, suggesting

that this transcription factor might have a role in

inflammation, possibly in attempting to re-establish

homoeostasis [106]. In addition, NO-evoked HIF-1

induction as a heretofore inflammatory response in

association with NO formation was confirmed with

the observation that the induction of HIF-1 by NO is

mediated via the phosphatidylinositol 3-kinase (PI

3K) pathway [115,116].

On the molecular mechanisms implicated, it has

been noted that the early immediate response genes

inducible-nitric oxide synthase (iNOS) and cyclo-
oxygenase (COX)-2 promote the inflammatory

response by the rapid and excessive production of

NO and prostaglandins (PGs). HIF-1 may regulate the

induction of iNOS during the ischemic phase of

hemorrhagic shock, a condition which involves the

downstream activation of NF-nB and the release of

inflammatory mediators [117].

This was corroborated with the regulation of HIF-

1a by the NO [107] and TNF-a [101,107,108] under

normoxic conditions. In concert, it has been reported

that NO and TNF-a released from activated macro-

phages can stabilize HIF-1a [101–108]. Additionally,

HIF induction by TNF-a in normoxic cells was

reported to require receptor-interacting protein-

dependent NF-nB activation [101]. Of note, it was

observed that IL-1h-mediated upregulation of HIF-1a

via an NF-nB/COX-2 pathway identified HIF-1 as a

critical link between inflammation and oncogenesis

[102].

In transgenic mice expressing constitutively active

HIF-1a, it has been reported that the induction of

hypervascularity occurred without leakage, edema or

inflammation, despite the increase in vascular endo-

thelial growth factor (VEGF) expression [109].

Furthermore, the induction of HIF-1a and activation

of caspase-3 in hypoxia-reoxygenated bone marrow

stroma was negatively regulated by the delayed

production of substance P (SP), the major peptide

encoded by the immune/hemopoietic modulator gene,

preprotachykinin-1 (PPT-I) [118].

Differential regulation of two alternatively spliced

isoforms of HIF-1a was reported in activated T

lymphocytes. For example, the T cell antigen receptor

(TCR)-triggered activation of normal ex vivo T cells

and differentiated T cells resulted in the upregulation

of expression of I.1 isoform of HIF-1a mRNA

without an effect on constitutive I.2 HIF-1a mRNA

expression [119]. In addition, the accumulation of I.1

HIF-1a mRNA isoform in T lymphocytes was also

demonstrated during cytokine-mediated inflammation

in vivo, suggesting a physiological role of short HIF-

1a isoform in activated lymphocytes.

Of interest, the TCR-triggered, protein kinase C

and Ca2+/calcineurin-mediated HIF-1a I.1 mRNA

induction was protein synthesis-independent, suggest-

ing that the HIF-1a I.1 gene might be expressed as an

immediate early response gene [119]. Similarly, HIF

was reported to regulate the survival of antigen
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receptor-driven T cells, suggesting a mode of action

involving peripheral immunity [120]. Of interest, the

cluster of designation/differentiation (CD)40-medi-

ated immune/non-immune cell interactions induced

mucosal fibroblast chemokines leading to T-cell

transmigration in an HIF-dependent manner, suggest-

ing a role in chronic inflammation [121,122].

The expression of the HIF-1 during acute inflam-

mation was also investigated in experimental wounds.

HIF-1a induction in primary inflammatory cells was

reported to be TNF-a-dependent, the expression of

which in early wounds may contribute to the

regulation of iNOS and VEGF, two HIF-1-responsive

genes intimately related to the process of repair [110].

In addition, COX-2 and presenilin-1 gene expression

induced by IL-1h and amyloid h42 peptide was

potentiated by hypoxia in primary human neural cells,

with HIF-1 contributing episodically to amyloido-

genesis, inflammation and Alzheimer’s disease (AD)

pathophysiology [123]. Interestingly, HIF-1a and

inflammatory mediators were observed to co-localize

in the hypoxic synovium of inflamed joints in

adjuvant-induced arthritis [124]. A role of hypoxia

in the pathogenesis of alcoholic liver disease was also

observed [125].

Neutrophil apoptosis represents a major mecha-

nism involved in the resolution of acute inflammation

[126,127]. In contrast to the effect of hypoxia

observed in many other cell types, oxygen depriva-

tion, can cause a profound but reversible delay in the

rate of constitutive apoptosis in human neutrophils

when aged in vitro. In this regard, it has been

observed that the neutrophil has a ferroprotein oxy-

gen-sensing mechanism identical to that for erythro-

poietin (EPO) regulation which results in HIF-1a

upregulation with profound but reversible inhibition

of neutrophil apoptosis [111]. This finding may have

important implications for the resolution of granulo-

cytic inflammation at sites of low-oxygen tension.

Additionally, alveolar hypoxia, with the involve-

ment of HIF-1 and NF-nB, was observed to induce

macrophage recruitment, an increase in albumin

leakage and enhanced expression of inflammatory

mediators, which were mainly macrophage depend-

ent, thereby implicating alveolar macrophages to have

a prominent role in the inflammatory response in

hypoxia-induced lung injury and the related upregu-

lation of inflammatory mediators [35,98,99]. This
mechanism has also been confirmed with HIF-1a

being essential for myeloid cell-mediated inflamma-

tion [112,128]. Similarly, it has been observed that the

hypoxic gene activation by lipopolysaccharide (LPS)

in macrophages implicated HIF-1a [113,122].

2.2. HIF and cytokines—role for interleukins and

related mediators

As mentioned previously, cytokines are emanating

as critical regulators of HIF. This section will further

elaborate on the molecular mechanisms mediating

cytokine-dependent HIF regulation.

2.2.1. Role for IL-1

IL-1h was reported to stimulate the DNA binding

activity of HIF-1. IL-1-induced inhibition of EPO

production, for example, was not mediated by the

impairment of HIF-1 function, indicating that HIF-1

may well be involved in modulating gene expression

during inflammation [105]. In addition, hypoxia and

IL-1h were reported to stimulate VEGF production in

human proximal tubular cells, ostensibly due to

increased DNA binding of HIF-1 to hypoxia-respon-

sive elements in the VEGF gene promoter, thereby

contributing to microvascular leakage and monocyte

extravasation [129]. This in agreement with another

report which indicated that IL-1 induced HIF-1 in

human gingival and synovial fibroblasts, as indicated

above [106].

The observation that cytokines, such as IL-1, have

the ability to induce the expression and stability of

HIF-1 under normoxic conditions remains of partic-

ular interest. For instance, it has been reported that

the normoxic induction of HIF-1a by insulin and IL-

1h involved the PI 3-kinase pathway, followed by

the downregulation of EPO production [130].

Recently, Haddad reported that recombinant human

IL-1 h-mediated regulation of HIF-1a stabilization,

nuclear translocation and activation required an

antioxidant/reactive oxygen species (ROS)-sensitive

mechanism, indicating that a non-hypoxic pathway is

mediating cytokine-dependent regulation of HIF-1a

[131].

Similarly, as noted earlier, IL-1h-mediated upre-

gulation of HIF-1a required an NF-nB/COX-2 path-

way that identified HIF-1 as a critical link between

inflammation and oncogenesis [102], knowing that
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NF-nB is a major player in the regulation of genes

encoding cytokines. Further elaborating on the essen-

tial mechanisms, it has been observed that the

normoxic induction of HIF-1a by IL-1h involved

the extracellular signal-regulated kinase (ERK)1/2

pathway (mitogen-activated protein kinase (MAP-

K)ERK1/2) in normal human cytotrophoblast cells

[132].

It has also been reported that IL-1h upregulates the

expression of epidermal growth factor (EGF) and

VEGF receptor (VEGFR), raising the possibility that

IL-1h might play an important role in VEGF-

mediated neo-vascularization [133]. The aforemen-

tioned study demonstrated that IL-1h played a key

role in ischemia-induced neo-vascularization essen-

tially by mobilizing CD34�/B220�CD3�Flk-1+ endo-

thelial precursor cells in a VEGF-dependent manner

as well as by upregulating expressions of VEGF,

VEGFR and adhesion molecules on endothelial cells

[133].

2.2.2. Role for IL-2

In an interesting study, hypoxic exposure and

TCR-mediated activation were reported to be additive

in enhancing levels of hypoxia response element-

containing gene products in lymphocyte supernatants

[134]. In contrast, hypoxia inhibited the accumulation

of non-hypoxia response element-containing gene

products (e.g., IL-2 and interferon (IFN)-g), suggest-

ing that T cell activation in hypoxic conditions may

lead to different patterns of lymphokine secretion and

accumulation of cytokines (e.g., VEGF) affecting

endothelial cells and vascular permeabilization

[134]. Moreover, targeting of the VHL-HIF-hypoxia-

induced gene pathway for renal cell carcinoma

therapy was reported to implicate IL-2 and other

cytokines, suggesting therapeutic synergism [135].

2.2.3. Role for IL-6

It has been reported that NF-nB factor was

upregulated and pro-inflammatory cytokines, includ-

ing IL-6, were activated in patients with ureteropelvic

junction (UPJ) obstruction who failed endopyelotomy

[136]. Those patients with increased expression of

NF-nB demonstrated increases in IL-6 expression as

well. In addition, HIF was identified in all the tissue

samples tested and the stimulation of the human

urothelial cells by hypoxia, known to activate NF-nB,
resulted in an increase in the levels of IL-1 and IL-6

transcripts compared with hypoxia-exposed cells in

the presence of NF-nB inhibitors. This suggested that

pro-inflammatory cytokines upregulated by this

nuclear factor can result in fibrosis and affect healing

after endopyelotomy [136]. Of interest, hypoxia, and

apparently HIF, appeared to participate in the activa-

tion of this transcription factor. Furthermore, the

expression of pro-inflammatory cytokines via HIF-

1a and NF-nB activation on desferrioxamine-stimu-

lated mast cells revealed that cytokines seem to be

under transcriptional regulation in hypoxic conditions

[137].

2.2.4. Role for IL-8

The regulation of IL-8, a chemokine, by hypoxia in

human macrophages revealed a potential role in the

pathogenesis of many diseases, such as the acute

respiratory distress syndrome (ARDS) of the lung

[138]. Rapidly raised intrapulmonary IL-8 levels were

associated with ARDS progression in patients with

major trauma. In addition, acute hypoxia, a clinically

relevant stimulus, rapidly and selectively upregulated

IL-8 associated with a novel pattern of transcription

factor activation (HIF). It was suggested that acute

hypoxia may represent one of potentially several pro-

inflammatory stimuli responsible for rapid intrapulmo-

nary IL-8 generation in patients at-risk of ARDS [138].

In another setting, it was reported that increased

growth factor production in a human prostatic stromal

cell culture model caused by hypoxia involved the

secretion of IL-8 and other mediators, suggesting that

hypoxia might be a key factor contributing to prostate

pathophysiology [139].

2.2.5. Role for IL-12

Metastatic renal cell cancer remains a disease

which is difficult to treat medically. Prognosis often

depends more on intrinsic disease features than on

treatment choices. The central role of VHL in clear

cell renal cell carcinoma (RCC) pathogenesis is

conspicuous. Some clinically applied agents whose

clinical results were highlighted included 5-FU,

retinoids, thalidomide, razoxane and IL-12 [140].

Features of the pathophysiology of VHL were

described, with attention to potential novel therapies

targeting HIF-1a, VEGF, transforming growth factor

(TGF)-h1 and TGF-a pathways. Of interest, most
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basic are cytokine therapies incorporating new IL-2

and IFN-a schedules. Newer cytokine-based drugs

include pegylated forms and IL-12 [140]. In addition,

allogeneic mini-transplantation has generated much

interest. For example, tumor-associated antigens are

being used to direct therapy using both identified and

non-identified epitopes. A variety of tumor-cell

vaccine and dendritic-cell vaccine clinical approaches

are discussed. Finally, nephrectomy for known meta-

static disease has been demonstrated to be helpful in

retrospective and now prospective trials [140].

2.2.6. Role for IL-15

Expression of angiogenic factors was reported to

have been upregulated in hyperplastic mucosa adja-

cent to colon cancer, and that this upregulation was

closely associated with cancer growth and metastasis

[141]. In the hyperplastic mucosa adjacent to

KM12SM tumor in the cecum of athymic mice,

VEGF upregulation was associated with HIF-1a

induction. The hyperplastic mucosa also showed

hypoacetylation of histone H4 and reduction of both

p53 and VHL proteins [141].

To examine the effects of growth factors and

cytokines on histone acetylation and levels of p53,

VHL and HIF-1a, the rat intestinal epithelial cell

line IEC6 was treated with EGF and IL-15. Notably,

acetylated histone H4, p53 protein and ubiquitinated

protein levels were reduced, whereas HIF-1a

production was upregulated in EGF- and IL-15-

treated cells, suggesting that EGF- or IL-15-induced

histone H4 hypoacetylation is associated with

repression of p53 and VHL genes [141]. The

subsequent suppression of protein ubiquitination

can lead to upregulation of VEGF production by

HIF-1a retention.

2.2.7. Role for TNF

TNF-a was reported to have a stimulatory effect

on HIF-1 DNA binding activity in a manner similar

to that of IL-1 [105]. In addition, the induction of

adhesion molecules, partakers in local inflammation,

with hypoxia were reported to have been induced by

IL-1 and TNF-a that was caused with anoxia/

reperfusion [142]. This was corroborated with the

observation that the upregulation of redox factor-1

(Ref-1), a transcription factor, promoted endothelial

cell survival in response to hypoxia and TNF
through NF-nB-independent and NF-nB-dependent
signaling cascades, respectively, indicating that Ref-1

may act as a critical cofactor mediating the TNF-

induced NF-nB response in the vascular endothelium

[143].

Recently, Sandau et al. [107] reported that the

regulation of the HIF-1a by the inflammatory

mediators NO and TNF-a requires diverse agonists

under normoxic conditions, which employ different

signaling pathways. Similarly, HIF-1 expression in

early wounds was reported to possibly contribute to

the regulation of iNOS and VEGF, two HIF-1-

responsive genes intimately related to the process of

repair, in a TNF-a-dependent stream [110].

On the mechanisms implicated with TNF-a-

dependent regulation of HIF-1a, Hehlgans et al.

[144] reported that the hypoxic upregulation of TNF

receptor type 2 expression involved nuclear factor-

interleukin-6 (NF-IL-6) and was independent of HIF-1

or HIF-2. TNF is well known to exert its biologic

activity via two distinct membrane receptors: TNF

receptor type 1 (p55TNFR) and TNF receptor type 2

(p75TNFR). Whereas the p55TNFR gene is rather

constitutively expressed, transcription of p75TNFR is

strongly modulated by a number of stimulatory agents

[145].

Experimental evidence suggested the involve-

ment of p75TNFR in endothelial cell activation.

Northern blot analysis revealed that p75TNFR

mRNA was upregulated in NIH3T3 cells under

hypoxia and reoxygenation. This observation

directly originated from transcriptional activation

of the p75TNFR gene, as shown by reporter gene

analysis [144]. In addition, co-transfection experi-

ments clearly showed that the transcriptional

induction of the p75TNFR gene was independent

of HIF-1a and HIF-2a. Of particular interest, using

deletion mutants of the 5V-flanking region of the

p75TNFR gene, the authors were able to identify a

putative DNA binding site for NF-IL-6 to be

responsible for the transcriptional upregulation of

the p75TNFR gene under conditions of hypoxia

and reoxygenation.

Furthermore, Haddad et al. [108,131] suggested a

non-hypoxic, ROS-sensitive pathway mediating

TNF-a-dependent regulation of HIF-a in alveolar

epithelial cells. TNF-a activated the translocation of

HIF-1a, associated with upregulating its activity



Fig. 4. Subset correlation analysis of ROS-dependent activation of

HIF-1a. (A) Correlation with H2O2. (B) Correlation with O2
�d . (C)

Correlation withdOH. All forms of ROS tested in vitro show

positive correlation with HIF-1a activation. The regression wizard

lines represent the degree of confidence at 95% limit. n=3, which

represents the number of independent experiments in alveolar

epithelial cells (see Refs. [9,64,65,108,131]).

Fig. 5. MAPK signaling pathways and their ramifications. The ever

evolving MAPK pathways consist of four major groupings and

numerous related proteins which constitute interrelated signal

transduction cascades activated by stimuli such as growth factors,

stress, cytokines and inflammation. The four major groupings are

the ERK, JNK or SAPK, p38 and the Big MAPK or ERK5

cascades. Signals from cell surface receptors such as GPCRs and

growth factor receptors are transduced, directly or via small G

proteins such as Ras and Rac, to multiple tiers of protein kinases

that amplify these signals and/or regulate each other. The diagram is

organized to illustrate the cascades by the background colors and

also the tiers of kinases as indicated down the left hand side and

separated by the horizontal dashed lines. In some cascades the first

activation tier involves the MAPKKKKs, MAP kinase kinase kinase

kinases or MAP4K proteins. The next tier are the serine/threonine

MAPKKKs, MAP kinase kinase kinase or MAP3Ks such as RAF,

TAK, ASK, and MEKK1. This level has the greatest amount of

cross-communication currently known. The serine/threonine/tyro-

sine MAPKKs, MAP Kinase kinases or MAP2Ks, such as the MKK

and MEK kinases, are one step up from the MAP kinase cascade,

phosphorylating and activating these kinases. The focal tier, the

MAPKs or MAP kinases includes JNK1, p38, and ERKs, and are

the kinases that give each cascade its name. The endpoints of these

cascades, shown in the bottom tier, include the MAPK activated

protein kinases (MAPKAPK) and some of the numerous tran-

scription factors that regulate genes involved in apoptosis,

inflammation, cell growth and differentiation (see Ref. [9]).
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under normoxia. Moreover, analysis of the mode of

action of TNF-a revealed the accumulation of

hydrogen peroxide (H2O2), superoxide anion

(O2
�d ) and the hydroxyl radical (d OH) (Fig. 4).

The source of those ROS is a matter of discrepancy,
however, it swings in the least between NADPH

oxidase and the mitochondrion [1,108].

Antioxidants purported as prototypical scavengers

of H2O2 and
d OH, attenuated TNF-a-induced HIF-1a

activation, and blockading NADPH-oxidase by scav-

enging O2
�d reduced the activity of HIF-1a (see Fig. 3).

Furthermore, inhibition of the mitochondrion complex

I abrogated TNF-a-dependent activation of HIF-1a,

while interrupting the respiratory chain reversed the

excitatory effect of TNF-a on HIF-1a [108].

In another experimental setup, it was reported that

capsaicin (8-methyl-N-vanillyl-6-nonenamide), a

known natural dietary chemo-preventive agent, which

inhibits malignant melanoma cell proliferation, has

the ability to regulate VEGF expression by modu-

lation of HIF-1a in human malignant melanoma cells

independent of IL-1 or TNF-a [146], suggesting that

the inhibition of cellular proliferation by capsaicin

follows enhanced VEGF production by enhancing

HIF-1a expression and binding to HRE.

Furthermore, it has been reported that TNF-a

induced the accumulation of a ubiquitinated form of

HIF-1a through a NF-nB-dependent pathway, thereby
allowing optimum interaction with pVHL [147].
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Reciprocally, inflammatory cytokines seem to be

under HIF-1a or NF-nB transcriptional regulation

under hypoxia in mast cells [137].

2.3. HIF and MAPKs–role for cytokines

MAPKs were identified by virtue of their activa-

tion in response to growth factor stimulation of cells

in culture, hence their well known nomenclature.

MAPKs have similar biochemical properties,

immuno-cross-reactivities, amino acid sequence and

ability to phosphorylate similar substrates. Maximal

MAPK activity requires that both tyrosine and

threonine residues are phosphorylated. This indicates

that MAPKs act as switch kinases that transmit

information of increased intracellular tyrosine phos-

phorylation to that of serine/threonine phosphoryla-

tion.

It is beyond the scope of this paper, however, to

discuss the entirety of MAPK regulation and their

bifurcations. Excellent reviews, in this regard, have

been recently released covering this topic [148–157].

Therefore, we will concentrate on the pathways

mediating HIF–MAPK interactions, with emphasis

on the role of cytokines. For clarity, MAPK signaling

pathways and their ramifications have been depicted

in Fig. 5.

HIF-1, during hypoxic stress, triggers the expres-

sion of genes essentially encoding for glycolytic

enzymes and angiogenic factors, as noted earlier. To

be active, HIF-1 must be phosphorylated. HIF-1 is a

substrate for various kinase pathways including

MAPKs. Several transduction pathways have been

proposed which act downstream of putative oxygen

sensors and lead to the activation of these kinases

[158].

2.3.1. HIF and MAPKp38

The elucidation of the molecular mechanisms

governing the HIF–MAPK interactions was initially

revealed in phenotypic changes associated with

malignancy. For instance, it has been reported that

the Kaposi’s sarcoma-associated herpes virus G

protein-coupled receptor upregulated VEGF expres-

sion and secretion through MAPK and MAPKp38

pathways acting on HIF-1a [159].

Moreover, Tacchini et al. [160] showed that N-

acetyl-l-cysteine (NAC), an antioxidant, reduced the
stimulatory effect of hepatocyte growth factor (HGF)

on stress kinase activities, while MAPKp42/44 was

unmodified, suggesting the involvement of c-Jun-N-

terminal kinase (JNK; MAPKJNK) and MAPKp38 in

HIF-1 activation. Of note, LY294002 inhibitor

blocked the activity of PI 3K, one of the principal

transducers of HGF/Met receptor signaling, prevented

the enhancement of HIF-1 DNA binding and

MAPKJNK activity, but the inhibition of MAPKp42/44

phosphorylation with PD98059 was ineffective, sug-

gesting that HGF can trigger a signal transduction

cascade involving PI 3K and ultimately can activate

HIF-1 [160].

Similarly, the insulin-induced retinal HIF-1a and

VEGF increases and the related blood–retinal barrier

breakdown were suppressed by inhibitors of

MAPKp38 and PI 3K, but not inhibitors of

MAPKp42/p44 or protein kinase C (PKC) [161]. In

addition, cell density mediated pericellular hypoxia

was shown to lead to the induction of HIF-1a via NO

and Ras/MAPK-mediated signaling pathways [162].

In head and neck squamous cell carcinoma lines,

hypoxia induced MAPKp38 activity [163]. This

activation was correlated with the induction of HIF-

1a expression and DNA binding activity, which was

blocked by the MAPKp38 inhibitor, SB203580.

Hypoxia also increased VEGF production, which

was inhibited by treatment with SB203580. Interest-

ingly, overexpression of MAPKp38 was sufficient to

induce HIF-1a and VEGF expression [163].

This is corroborated by the observation of

MAPKp38-mediated HIF-1a and VEGF induction by

chromium (VI), a potent inducer of tumors in animals,

in DU145 human prostate carcinoma cells [164]. In

contrast, evidence was provided for a role of

MAPKp38 in HIF-1a-independent induction of VEGF

expression by sodium arsenate in human ovarian

cancer cells [165] and human glioma cells [166].

Regulation of the hypoxia-dependent plasminogen

activator inhibitor (PAI) expression by MAPKs has

also been reported. Under hypoxic conditions, the

expression of PAI-1 (PAI-1) is mainly controlled by

HIF-1 [167]. For instance, treatment with SB203580

and Y294002, but not with the MEK1 inhibitor

PD98059, abrogated hypoxia-dependent PAI-1 induc-

tion in HepG2 cells. Consistently, overexpression of

PKB or of the MAPKp38 upstream kinases MKK6 and

MKK3 and of MAPKJNK, but not of MAPKp42/p44,
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enhanced PAI-1 mRNA levels [167]. In MKK3-,

MKK6- and protein kinase B (PKB)-expressing cells

luciferase (Luc) activities from a hypoxia-inducible

PAI-1-Luc construct or from a HIF-dependent Luc

construct and, concomitantly, HIF-1a protein levels

were enhanced, indicating that MAPKp38- and PKB-

dependent signaling pathways contribute to enhanced

PAI-1 levels in the hypoxic response. Moreover, it has

been shown that suppression of the dual-specificity

phosphatase MKP-1 enhanced HIF-1 transactivation

and increased the expression of EPO [168].

Leukocyte–endothelial interactions are regulated

by a cascade of molecular steps of cytokines, chemo-

kines and adhesion molecules. MAPKp38 is one of the

essential mediators in cytokine and chemokine

expression through the activation of NF-nB and

activating protein (AP)-1. Moreover, HIF-1-related

gene expression results in protection of ischemia–

reperfusion injury, ostensibly via the regulation of

inflammatory cytokines [169]. Moreover, activation

of the CD40/CD40L (CD40 ligand) system in the gut

mucosa triggered a self-sustaining loop of immune–

nonimmune cell interactions leading to an antigen-

independent influx of T cells that contributed to

chronic inflammation in an HIF-1-dependent path-

ways [170].

2.3.2. HIF and MAPKp42/p44

The initial report which described HIF-

MAPKp42/p44 interactions indicated a correlation

between the phosphorylation of HIF-1 and its

transcriptional activity [171]. In addition, Pages et

al. [172] demonstrated that MAPKp42/p44 stoichio-

metrically phosphorylated HIF-1a in vitro and that

HIF-1-dependent VEGF gene expression was

strongly enhanced by the exclusive activation of

MAPKp42/p44 [173,174]. However, MAPKp42/p44 did

not modulate the degradation/stabilization profile of

HIF-1a [175]. Similarly, PD98059 was shown to

block the transactivation but not the stabilization or

DNA binding ability of this transcription factor

[176].

The transactivation domain of HIF-1a was

recently dissected in correlation with specific

domains of HIF-1a interacting with specific signal-

ing pathways. During long-term stimulation,

MAPKp42/p44 becomes inactive while accumulating

in the nucleus. This inactivation was demonstrated
with phospho-specific immunostaining and dephos-

phorylation of a nuclear MAPKp42/p44 substrate,

HIF-1a [177], suggesting that the nucleus is a

critical site for mitogenic signal termination by: (1)

nuclear sequestration of MAPKp42/p44 away from

MEK, their cytoplasmic activator; and (2) dephos-

phorylation by specific nuclear phosphatases.

Furthermore, Lee et al. [178] designed several

fusion proteins that contain deletion mutants of HIF-

1a linked to the DNA binding domain of the yeast

protein Gal4. By using the Gal4-driven reporter

system, the transactivation activities of the Gal4/

HIF-1aa fusion proteins in Hep3B cells were inves-

tigated. The findings suggested that tyrosine kinases,

the MEK-1/MAPKp42/p44 pathway, but not the PI-3

kinase/Akt pathway, were involved in the hypoxia-

induced transactivation of HIF-1a [178].

It was also shown that the functional transactiva-

tion activities are located at both 522–649 and 650–

822 amino acids of HIF-1a. Treatment of PD98059

blocked the hypoxia-induced transactivation abilities

of both the 522–649 and 650–822 amino acids of the

C-terminal half of this transcription factor, implying

that the MEK-1/MAPKp42/p44 signaling pathway

cannot distinguish between the two hypoxia-induced

transactivation domains [178].

Hepatitis B virus X (HBX) protein was also shown

to enhance the transcriptional activity of HIF-1a

through activation of MAPK pathway [179]. The

stability of HIF-1a protein was increased by HBx in

HBx-inducible Chang liver cells as well as in transient

HBx expression system of non-hepatic cells. More-

over, immunofluorescence studies revealed that the

HBx-induced HIF-1a was partially translocated into

the nucleus in majority of cells while additional

CoCl2-induced hypoxic condition caused complete

nuclear translocation.

HBx induced the phosphorylation of HIF-1a and

activation of MAPKp42/p44, which were synergistically

enhanced in the presence of CoCl2. Furthermore, HBx

enhanced transcriptional activity of HIF-1a in the

reporter genes encoding hypoxia response element or

VEGF promoter. Either treatment of PD98059 or

coexpression of dominant-negative MAPK mutants

abolished the HBx-induced transcriptional activity

and protein stability as well as nuclear translocation

of HIF-1a, suggesting that HBx activates HIF-1a

through MAPK pathway [179].
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The association of HIF-1a with VHL was

decreased but the association with cyclic AMP-

response element binding protein (CREB)-binding

protein was enhanced in the presence of HBx,

indicating that the molecular mechanism by which

HBx enhances the protein stability and transactivation

function of HIF-1a. It was also demonstrated that

expression of HIF-1a and VEGF was increased in the

liver of HBx-transgenic mice, suggesting that the

cross-talk between HIF-1a and HBx may lead to

transcriptional activation of HIF-1a target genes,

which play a critical role in hepatocarcinogenesis

[179].

Concomitantly, hypoxic preconditioning (HPC)

was reported to protect neonatal cardiomyocytes

against H/R injury by promoting cardiomyocyte
Fig. 6. Signaling transduction pathways mediating cytokine-dependent reg

IL-1h and TNF-a, initiate a cascade of receptor-mediates mechanisms,

kinases involved with the phosphorylation of MAPKp38/MAPKJNK, and p

activation mechanisms upregulate the biosynthesis of the a subunit of HIF

allowing nuclear translocation and transactivation of this transcription fact

is likely provided with the normoxic induction by cytokines, which stab

upregulation of upstream kinases such as MAPKs. Adapted with modific
survival and membrane integrity [180]. The pro-

tective mechanism was attributed to the upregula-

tion of HIF-1a phosphorylation, induced by

MAPKp42/p44.

2.3.3. HIF and MAPKJNK

C-Jun (AP-1), a transcriptional entity regulated by

the upstream MAPKJNK, and HIF-1 functionally

cooperates in hypoxia-induced gene transcription.

For instance, a dominant-negative mutant of c-Jun

which lacks its transactivation domain partially

inhibited HIF-1-mediated transcription [181]. This

cooperative effect was not due to an increase in the

nuclear amount of the HIF-1a subunit, nor did it

require direct binding of c-Jun to DNA. In addition, c-

Jun and HIF-1a were able to associate in vivo but not
ulation of HIF, with the involvement of MAPKs. Cytokines, such as

which diverge at the level of G-coupled receptors (Ras), upstream

hosphatidylinositol-3 kinase pathway. Subsequent phosphorylation/

, which couples with the constitutively expressed h subunit, thereby

or. The activation of HIF-1a requires phosphorylation. This scenario

ilize the a subunit, ostensibly via downregulation of VHL and/or

ation from Wenger [6] and Lee et al. [14].
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in vitro, suggesting that this interaction might involve

the participation of additional proteins and/or a

posttranslational modification of these factors [181].

In this context, hypoxia induced phosphorylation of

c-Jun at Ser63 in endothelial cells [182]. This process

was involved in its cooperative effect, since specific

blockade of the MAPKJNK pathway and mutation of c-

Jun at Ser63 and Ser73 impaired its functional

cooperation with HIF-1. Notably, it was demonstrated

that HIF-1 and AP-1 can cooperate to increase gene

expression in hypoxia with particular role for MAPKs

[183–191].

Signaling pathways involving HIF–cytokine inter-

actions and the role of MAPK signaling pathways are

illustrated in Fig. 6.
3. Summary, conclusion and prospects

HIF–cytokine interactions research continues

apace—ostensibly due to the fact that major unan-

swered quotations about the role of HIF in cytokine

regulation, and inflammation, remain to be addressed.

On the immunologic features that characterize HIF, it

is conspicuous that HIF can act as a dual sensor: a

relatively established player in hypoxia/hyperoxia

signaling, an oxygen/redox sensor, and a burgeoning

participant in immune functions, a putative immuno-

logic sensor. The latter feature characterizes what

perhaps may be the keynote of transduction pathways

culminating in a well-defined transcriptional response

targeted at alleviating the strains imposed with

oxidative stress and inflammation.

The evolving relationship among diverse, yet

closely related, mechanisms mediating the regulation

of oxidative stress, oxygens, inflammation and HIF,

reveals another face for HIF—an immunologically

orientated transcription factor with the powers of

shaping oxygen sensing and transduction pathways.

It remains a particular interest to decipher the

molecular codes that define the modes of action

of HIF, and as such reveal the possible therapeutic

values of knowing the identity of this intriguing

factor. In light of the aforementioned, it is imper-

ative that the classic understanding of HIF as an

oxygen sensor be revisited to finely tune with

current notes being played within the immunology

symphony.
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