VX-745 Vertex Pharmaceuticals

John J Haddad

Address
Tayside Institute of Child Health
Faculty of Medicine, Dentistry & Nursing
Ninewells Hospital and Medical School
University of Dundee
Dundee
DD1 9SY
Scotland
UK
E-mail: j.j.haddad@dundee.ac.uk

Current Opinion in Investigational Drugs 2001 2(8):1070-1076
© PharmaPress Ltd ISSN 1472-4472

VX-745, a lead anti-inflammatory candidate, small-molecule inhibitor of mitogen-activated protein kinase (MAPK), is under development by Vertex Pharmaceuticals Inc in association with Kissei Pharmaceutical Co Ltd for the potential treatment of rheumatoid arthritis (RA). VX-745 was introduced by Vertex as a potential anti-inflammatory drug for the treatment of RA in a pilot phase II trial initiated in November 1999 [346067]. In June 2000, phase II trials were still ongoing [371819] and in January 2001, Vertex initiated a randomized, double-blind, placebo-controlled phase II trial in adult patients with RA, with the objective of evaluating clinical response rates, self-reported patient health assessments and pharmacodynamic markers of drug activity [395083].

During the 33rd Annual Meeting of the American Chemical Society in May 2000, VX-745 was reported to be active against several isotypes of p38 MAPK, including p38α, p38β and p38γ [368149]. The targeting of p38 MAPK by VX-745 was associated with the suppression of the release of inflammatory mediators, including interleukin (IL)-1β and tumor necrosis factor (TNF)α, known to be implicated in exacerbating the pathophysiology of RA [273648], [368149], [371548], [372054], [408713].

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease [208892], [248952], [265991], which particularly affects the synovial articulating joints, and is characterized by the infiltration of immunocompetent cells and the formation of pannus tissue that causes the degradation of articular cartilage and subchondral bone (See the diagrammatic representation below in Figure 1) [225361]. Despite the fact that the etiology of RA remains largely obscure, recent discoveries and research efforts are providing insight into the underlying molecular mechanisms involved in regulating the progression of RA in vitro [40585], [172466], [352592] and in vivo [110120], [227586], [265856], [310667], [407697].

The expression and regulation of downstream mediators of inflammation and joint damage in RA include inflammatory cytokines, of which interleukin (IL)-1β [70702], [162758], [296038], [296010], [296038]. MAPKs are proline-targeted serine-threonine kinases that transduce environmental stimuli to the nucleus and they themselves are activated by upstream MAPK kinases (MAPKKs) on both threonine and tyrosine residues within an ‘activation loop’ [280369], [296038]. Once activated, MAPks can phosphorylate and activate other kinases or nuclear proteins, including potential transcription factors and substrates. The novel mammalian reactivating protein kinase (p38/RK) MAPks are stress-activated protein kinases (SAPK) that mediate responses to cellular stresses such as UV irradiation, osmotic imbalance, heat shock, DNA damage, bacterial products, such as lipopolysaccharide (LPS), and inflammatory signals [296038]. Furthermore, inflammatory mediators, such as cytokines, activate p38/RK MAPK pathway in several cell types [266863], [296038]. Of note, p38/RK MAPK has been recently implicated in regulating pro-inflammatory cytokine biosynthesis [225706], [225707], [254575], [257155], [260568], [363873] and transcription [285724], [366385]. Recently, the p38 MAPK signal transduction pathway has emerged as a target for the development of a therapeutic strategy in pathophysiological conditions such as RA [210214], [257153], [348258], [355006], [377246], [379930], [400737], [411102]. Therefore, targeting this enzyme and the downstream inflammatory pathways that MAPK regulates has been the focus of efforts at Vertex Pharmaceuticals Inc to create a drug that selectively interferes with, and blocks, the inflammatory potential of p38 MAPK [273428], [307144].

Many extracellular stimuli, including pro-inflammatory cytokines and other inflammatory mediators, elicit specific cellular responses through the activation of mitogen-activated protein kinase (MAPK) signaling pathways [254172], [266863], [296010], [296038]. MAPKs are proline-targeted serine-threonine kinases that transduce environmental stimuli to the nucleus and they themselves are activated by upstream MAPK kinases (MAPKKs) on both threonine and tyrosine residues within an ‘activation loop’ [280369], [296038]. Once activated, MAPks can phosphorylate and activate other kinases or nuclear proteins, including potential transcription factors and substrates. The novel mammalian reactivating protein kinase (p38/RK) MAPks are stress-activated protein kinases (SAPK) that mediate responses to cellular stresses such as UV irradiation, osmotic imbalance, heat shock, DNA damage, bacterial products, such as lipopolysaccharide (LPS), and inflammatory signals [296038]. Furthermore, inflammatory mediators, such as cytokines, activate p38/RK MAPK pathway in several cell types [266863], [296038]. Of note, p38/RK MAPK has been recently implicated in regulating pro-inflammatory cytokine biosynthesis [225706], [225707], [254575], [257155], [260568], [363873] and transcription [285724], [366385]. Recently, the p38 MAPK signal transduction pathway has emerged as a target for the development of a therapeutic strategy in pathophysiological conditions such as RA [210214], [257153], [348258], [355006], [377246], [379930], [400737], [411102]. Therefore, targeting this enzyme and the downstream inflammatory pathways that MAPK regulates has been the focus of efforts at Vertex Pharmaceuticals Inc to create a drug that selectively interferes with, and blocks, the inflammatory potential of p38 MAPK [273428], [307144].
Figure 1. Diagramatic representation of the effects of RA on a synovial joint.

Synthesis and SAR

In November 1996, Vertex reported the three-dimensional X-ray crystallographic structure of p38 MAPK [224121], [338958], and thereby benefited from this high-resolution (2.3 Å) crystalline structure of the enzyme to design therapeutic drugs that target and block inflammatory mediators regulated by p38 MAPK. The structure revealed the active site of p38 MAPK and also the shape and orientation of the binding loop for ATP, a cofactor [224121], [246805], [268553], [303458], [321050]. Once p38 MAPK is activated, a gate uncovers the active site allowing optimum and efficient binding of ATP, thereby leading to subsequent phosphorylation and activation of the enzyme. The geometry of p38 MAPK, subsequently, allowed the screening of various inhibitors that bind p38 MAPK and block the active site gate [308835], [314282], [320920]. An X-ray structure of the lead compound, VK-19911, was developed and its binding to p38 MAPK studied [262571], [369960]. The compound binds to the ATP site and the Thr18 residue was found to rotate, thus allowing the binding of the inhibitor [369960]. VK-19911 was modeled as a p38 MAPK inhibitor, with similar binding kinetics to phosphorylated and unphosphorylated forms of p38 MAPK through binding to the ATP pocket, and has similar properties to SB-203580 (SmithKline Beecham) [268556], [269032], [299095]. Further development led to VK-21931 and SAR built around this small molecule generated VX-745. No data are currently available on the affinity of the compound for the enzyme in comparison with other pyridinylimidazole derivatives [242365], [257155], [268556], [285724], [299095], [314282], [352592], [363873].

Pharmacology

Following the discovery of the crystal structure of p38 MAPK [224121], Vertex and Kissei have collaborated to develop novel pharmacological drugs to treat inflammatory and neurological disease [262571], [273428], [291135], [307144]. The agreement focuses on the design and development of inhibitors of p38 MAPK, a human enzyme involved in the onset and progression of inflammation and programmed cell death [225707], [254172], [285724], [296010], [296038]. VX-745 was identified as such a novel inhibitor of p38 MAPK and the implicated downstream inflammatory pathways [262571], [291135], [372054], [372943].

p38 MAPK is a specific enzyme that regulates the production of IL-1 [266863], [393037], IL-2 [260568], IL-6 [225706], TNFα [254575], [296010], chemokines [366835] and nitric oxide (NO) [296010], as part of acute and chronic inflammatory responses [222881], [225707], [257155], [348258]. In preclinical studies, VX-745 blocked the disease progression in animal models of RA and stroke [291135]. The rapid development of VX-745 from discovery to phase I clinical trials reflects this novel approach adopted to counteract and suppress the inflammatory process [262571], [291135]. As such, the phase I, randomized blinded clinical trial launched in 1999 was designed to test the pharmacokinetics and tolerability of VX-745 in escalating single doses in healthy volunteers [317656] and led to the initiation of phase II trial in patients with RA [346067].

In vitro, VX-745 was selective for p38 MAPK compared to a large panel of kinases (IC$_{50}$ ≥ 20 µM). VX-745 selectively inhibited 38α MAPK (IC$_{50}$ = 10 nM), p38β MAPK (IC$_{50}$ = 220 nM) [368149], but not p38γ MAPK (IC$_{50}$ ≥ 20 µM) [368149]. Further, VX-745 selectively inhibited IL-1β and TNFα, respectively, and VX-745 blocked IL-6 and IL-8 production induced by IL-1 and TNFα, and cyclooxygenase (COX)-2 synthesis mediated by LPS and IL-1β [408713]. In a human whole blood assay, VX-745 blocked IL-1 and TNFα inhibition, respectively [368149], [372054].

In the classical cartilage-induced arthritis model, VX-745 exhibited a dose-responsive decrease in severity score [369960]. Furthermore, 33.1% suppression of paw inflammation was observed with VX-745 (10 mg/kg bid), which was equivalent to maximum effect using prednisolone [368149], [372054], [372943]. VX-745 was also effective against adjuvant-induced arthritis (AA) in the rat, with an ED$_{50}$ value of 5 mg/kg bid, indicated by measuring ankle joint diameter; the efficacy at this dose was also equal to the maximal efficacy observed with prednisolone [368149]. Histological scores for VX-745 in AA rat were 93% inhibition of bone resorption and 56% inhibition of inflammation [368149]. Improvement in bone resorption seems to be a hallmark of p38 inhibitors [368149], [369960], [371548], [374146].
Metabolism

The pharmacological actions of VX-745 arise from its ability to irreversibly compete with ATP in the active binding site of p38 MAPK, thereby rendering the enzyme inactive. VX-745 is insoluble in water, but by using different vehicles, it has been reported to be bioavailable. Oral pharmacokinetic studies in the rat demonstrated a bioavailability of 56% at 40 mg/kg with a t1/2 of 4.5 h, using an isopropanol vehicle. Detailed data on the metabolism of VX-745, however, are not currently available.

Toxicity

No toxicity data are currently available.

Clinical Development

Vertex initiated its p38 MAPK discovery program in 1996, leveraging proprietary structural information of the p38 enzyme and performing cluster-based screening of compound libraries to generate potential drug leads. In July 1998, Vertex and Kissei Pharmaceuticals announced that they had selected VX-745 as a lead drug development candidate. Following successful completion of preclinical studies, both companies began planning for clinical development of VX-745 in 1999.

Phase I

In March 1999, the initiation of a phase I clinical trial with VX-745 was announced. The phase I randomized, blinded clinical trial was designed to assess the pharmacokinetics and tolerability of VX-745 in escalating single doses in healthy volunteers. As part of the study, researchers analyzed blood samples to determine the ability of different doses of VX-745 to inhibit experimentally-induced TNFα production using specific biochemical assays. Following completion of the study, Vertex conducted additional single and multidose trials of VX-745 later in the same year.

Phase II

In November 1999, Vertex announced that it had begun an exploratory phase II trial of VX-745 to provide further information about its pharmacodynamic activity and potential for the treatment of RA, and help design larger studies aimed at evaluating the safety and efficacy of the drug. In June 2000, phase II trials were ongoing. Commencing January 2001, a dose-ranging multicenter, randomized, double-blind, placebo-controlled trial tested two different doses of VX-745 in approximately 135 adult RA patients. The trial was designed to explore the clinical activity and tolerability of escalating doses of VX-745 when given as a monotherapy for 3 months. The trial enrolled patients who had active RA and were not responding adequately to their current therapy.

Side Effects and Contraindications

No data are currently available.

Current Opinion

Since the discovery of the p38 MAPK pathway as a regulatory mechanism controlling the inflammatory mediators, efforts have concentrated on targeting this pathway, with potent selective inhibitors, which lack side effects, contraindications or toxicity. RA is one of the commonest human autoimmune diseases, and of its numerous clinical features, perhaps inflammatory cytokines, such as IL-1 and TNFα, are the most crucial mediators that drive a cascade of biological events that correspond with the etiology of the disease. VX-745 has recently emerged as a novel inhibitor of p38 MAPK with anti-inflammatory actions.

Despite the fact that VX-745 recently began phase II clinical trials, more data have yet to emerge to be able to fully screen the efficacy of the drug in ameliorating RA. Should the effects of the inhibitor in suppressing the inflammatory process before and during the evolution of RA prove to be effective and manipulative, the effort is worthy and appropriate in strategically defining the next steps that should be undertaken in order to eradicate the potential harmful effects of the disease. Perhaps examining, more specifically, the mechanisms of the anti-inflammatory action of this drug is strongly warranted, and requires accurate, objective and precise assessment of the onset, evolution and the complications associated with the pathophysiology of RA.

Development history

<table>
<thead>
<tr>
<th>Developer</th>
<th>Country</th>
<th>Status</th>
<th>Indication</th>
<th>Date</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Pharmaceuticals Inc</td>
<td>Western Europe</td>
<td>C2</td>
<td>Rheumatoid arthritis</td>
<td>03-NOV-99</td>
<td>346087</td>
</tr>
<tr>
<td>Vertex Pharmaceuticals Inc</td>
<td>USA</td>
<td>C2</td>
<td>Rheumatoid arthritis</td>
<td>03-NOV-99</td>
<td>386727</td>
</tr>
<tr>
<td>Kissei Pharmaceutical Co Ltd</td>
<td>Western Europe</td>
<td>C2</td>
<td>Rheumatoid arthritis</td>
<td>24-OCT-00</td>
<td>346067</td>
</tr>
<tr>
<td>Kissei Pharmaceutical Co Ltd</td>
<td>Japan</td>
<td>DX</td>
<td>Inflammation</td>
<td>15-MAR-01</td>
<td>401955</td>
</tr>
<tr>
<td>Kissei Pharmaceutical Co Ltd</td>
<td>Japan</td>
<td>DX</td>
<td>Neurological disease</td>
<td>15-MAR-01</td>
<td>401955</td>
</tr>
</tbody>
</table>
Development history (continued)

<table>
<thead>
<tr>
<th>Developer</th>
<th>Country</th>
<th>Status</th>
<th>Indication</th>
<th>Date</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Pharmaceuticals Inc</td>
<td>Europe</td>
<td>DX</td>
<td>Inflammation</td>
<td>15-MAR-01</td>
<td>401955</td>
</tr>
<tr>
<td>Vertex Pharmaceuticals Inc</td>
<td>Europe</td>
<td>DX</td>
<td>Neurological disease</td>
<td>15-MAR-01</td>
<td>401955</td>
</tr>
<tr>
<td>Vertex Pharmaceuticals Inc</td>
<td>USA</td>
<td>DX</td>
<td>Inflammation</td>
<td>15-MAR-01</td>
<td>401955</td>
</tr>
<tr>
<td>Vertex Pharmaceuticals Inc</td>
<td>USA</td>
<td>DX</td>
<td>Neurological disease</td>
<td>15-MAR-01</td>
<td>401955</td>
</tr>
</tbody>
</table>

Literature classifications

Biology

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Effect Studied</th>
<th>Experimental Model</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>Crystal structure of p38 MAPK.</td>
<td>Spodoptera frugiperda (Sf9) insect cells (ATCC).</td>
<td>The three-dimensional structure of p38 MAPK at 2.3 Å resolution.</td>
<td>224121</td>
</tr>
<tr>
<td>In vitro</td>
<td>Inhibition of inflammatory cytokines.</td>
<td>PBMCs.</td>
<td>IL-1β (IC<sub>50</sub> = 56 nM); TNFα (IC<sub>50</sub> = 52 nM).</td>
<td>369960; 371548; 395083</td>
</tr>
<tr>
<td>In vitro</td>
<td>Inhibition of inflammatory mediators.</td>
<td>PBMCs.</td>
<td>Blockading LPS-stimulated production of IL-1β and TNFα, IL-6 and IL-8 production induced by TNFα and IL-1, and COX-2 synthesis mediated by LPS and IL-1β.</td>
<td>408713</td>
</tr>
<tr>
<td>In vitro</td>
<td>Inhibition of inflammatory cytokines.</td>
<td>Human whole blood assay.</td>
<td>IL-1β (IC<sub>50</sub> = 152 nM); TNFα (IC<sub>50</sub> = 177 nM).</td>
<td>369960; 371548</td>
</tr>
<tr>
<td>In vivo</td>
<td>Suppression of paw inflammation.</td>
<td>Classical cartilage-induced arthritis model in the mouse.</td>
<td>VX-745 (10 mg/kg bid) produced a 33.1% suppression of paw inflammation, equivalent to maximum effect using prednisolone.</td>
<td>372054; 372943</td>
</tr>
<tr>
<td>In vivo</td>
<td>Attenuation of AA.</td>
<td>Rat.</td>
<td>Effectiveness in AA with an ED<sub>50</sub> = 5 mg/kg bid, indicated by measuring ankle joint diameter.</td>
<td>372054; 372943; 395083</td>
</tr>
<tr>
<td>In vivo</td>
<td>Attenuation of bone resorption and inflammation.</td>
<td>Rat.</td>
<td>Histological scores were 93% inhibition for bone resorption and 56% inhibition of inflammation.</td>
<td>395083</td>
</tr>
<tr>
<td>In vivo</td>
<td>Attenuation of severity of disease.</td>
<td>Mouse CIA model.</td>
<td>VX-745 (50 mg/kg bid) administered in propylene glycol vehicle produced a dose-responsive decrease in severity score.</td>
<td>369960</td>
</tr>
</tbody>
</table>

Metabolism

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Effect Studied</th>
<th>Experimental Model</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo</td>
<td>Pharmacokinetics.</td>
<td>Rats (n = 3).</td>
<td>VX-745 (40 to 43 mg/kg bid po) was administered in an isopropanol vehicle. Absolute bioavailability data and t<sub>½</sub> values of 56% and 4.5h, respectively.</td>
<td>395083</td>
</tr>
<tr>
<td>In vivo</td>
<td>Pharmacokinetics.</td>
<td>Rat adjuvant arthritis model.</td>
<td>VX-745 (5 mg/kg po bid) produced a 54% protection against arthritis with oral bioavailability.</td>
<td>371548</td>
</tr>
</tbody>
</table>

Clinical

<table>
<thead>
<tr>
<th>Effect studied</th>
<th>Experimental model</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacokinetics and tolerability.</td>
<td>Healthy volunteers given escalating doses of VX-745.</td>
<td>Inhibition of experimentally induced TNFα production using specific biochemical assays with blood samples.</td>
<td>317656</td>
</tr>
<tr>
<td>Pharmacokinetics and pharmacodynamics.</td>
<td>10 Patients with RA.</td>
<td>The activity of VX-745 was assessed and clinical disease activity markers were monitored.</td>
<td>346067</td>
</tr>
<tr>
<td>Pharmacodynamics and tolerability in monotherapy.</td>
<td>135 Adult patients with RA.</td>
<td>The clinical activity was evaluated with escalating doses of VX-745, evaluating objective clinical response rates, self-reported patient health assessments and pharmacodynamic markers of drug activity.</td>
<td>395083; 399818</td>
</tr>
</tbody>
</table>
1074 Current Opinion in Investigational Drugs 2001 Vol 2 No 8

Associated patent

Title Substituted nitrogen containing heterocycles as inhibitors of p38 protein kinase.

Assignee Vertex Pharmaceuticals Inc

Publication WO-09827098 25-JUN-98

Priority US-00034288 18-DEC-96

References

40585 Cytokines in chronic inflammatory arthritis: VI. Analysis of the synovial cells involved in granulocyte-macrophage colony-stimulating factor production and gene expression in rheumatoid arthritis and its regulation by IL-1 and tumor necrosis factor-α, Álvaro-Gracia JM, Zvaifler NJ, Brown CB, Kastelein Ks, Firestein GS IMMUNOL 1991 146 3350-3371

70702 Connective tissue components in synovial fibroblast cultures exposed to interleukin 1 and prostaglandin E2, Heino J VIRCHOWS ARCHIV E, CELL PATHOL MOL PATHOL 1996 80 313-320

162758 Production of IL-1 and IL-1 receptor antagonist and the pathological significance in lipopolysaccharide-induced arthritis in rabbits, Matsukawa A, Ohikawara S, Maeda T, Takagi K, Yoshinaga M CLIN EXP IMMUNOL 1993 93 2 206-211

206892 Rheumatoid arthritis: new science, new treatment, Miller-Blair DJ, Robbins DL GERIATRICS 1994 49 6 29 31 35-38

210214 Progress toward the treatment of arthritis by gene therapy, Evans CR, Robbins PD ANN MED 1995 27 5 543-546

210221 Suppression of intra-articular responses to interleukin-1β by the interleukin-1 receptor antagonist gene to synovium, Hung GL, Gales Lauri J, Mueller GM, Georgescu HL, Larkin LA, Suchanek MK, Tindal MH, Robbins PD, Evans CH GENE THER 1994 11 1 64-69

212641 Interleukin-1 receptor antagonist (IL-1ra) as a probe and as a treatment for IL-1-mediated disease, Thompson RC, Dripped DJ, Eisenberg JP INTER J IMMUNOPHARMACOL 1992 14 3 475-480

227586 Cytokine therapy in rheumatoid arthritis, Maini RN, Feldmann M LANCET 1996 346 9030 824-825

239570 Balance of IL-1 receptor antagonist/IL-1β in rheumatoid synovium and its regulation by IL-4 and IL-10, Chomarat P, Vannier E, Dechanel J, Rissoo MC, Blanchereau J, Dinarello CA, Miossec P J RHEUMATOL 1995 154 3 1432-1439

248952 Innovative therapies in autoimmune diseases, Washington, DC, USA, Strand V IDDB MEETING REPORT 1997 April 3-5

251779 Cytokine combinations increase p75 tumor necrosis factor receptor binding and stimulate receptor shedding in rheumatoid synovial fibroblasts, Taylor DJ ARTHRITIS RHEUM 1994 37 232-235

254172 Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Ixa Z, Dickens M, Riandeau J, Davis RJ, Greenberg ME SCIENCE 1995 270 1326-1331

254176 Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic disease, Cope AP, Adenka D, Doherty M, Engelmann H, Gibbons D, Jones AG, Brennan FM, Maini RN, Wallach DMAP ARTHRITIS RHEUM 1992 35 1160-1169

257153 Inhibitors of p38 kinase, Hanson GJ CURR OPIN THERAP PATENTS 1997 7 7 729-733

260508 A p38 MAP kinase inhibitor SB203580 inhibits COX-dependent T cell proliferation and IL-2 production. Ward SG, Parry RV, Matthews J, O'Neill L BIOPHARM SOC TRANSC 1997 25 2 3045
26571 Vertex and Kissei Pharmaceutical sign agreement to develop novel drugs to treat inflammatory and neurological diseases. Vertex Pharmaceuticals Inc PRESS RELEASE 1997 September 11

265991 Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Mulderin D, Fitzgerald O, Bresnahan B ARTHRITIS RHEUM 1996 39 115-124

266863 Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. Geng Y, Valbracht J, Lotz M J CLIN INVEST 1996 98 2452-2460

266853 Kinetic mechanism for p38 MAP kinase. LoGrasso PV, Frantz B, Rolando AM, O'Keefe SJ, Hermes JD, O'Neill EA BIOCHEM 1997 36 34 10422-10427

266856 The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Wilson KP, McCaffrey PG, Hsiao K, Pazhanisamy S, Galullo V, Bemis GW, Fitzgibbon MJ, Caron PR, Murcko MA, Su MS CHEM BIOL 1997 4 6 423-431
- First mutagenesis experiments to demonstrate the crucial role of Thr182 for sensitivity to SB-203580. Validation of the comparison of various MAPK inhibitors and their efficacy in targeting the enzyme with irreversible inhibition kinematics.

269032 Signal transduction therapy - IBC's fourth annual conference novel targets for therapeutic intervention, San Diego, USA. Pelech S IDDB MEETING REPORT 1997 September 22-23

273428 Kissei to collaborate with Vertex for p38 MAP kinase. PHARMA JAPAN 1997 1566 10 11

- A comprehensive review on the role of inflammatory cytokines in exacerbating the pathology of rheumatoid arthritis. It provides insights into the clinical developments to date geared to counteract the deleterious effects of pro-inflammatory cytokines, investigate their balance with anti-inflammatory cytokines and delineate an approach to design novel therapeutic treatments targeting the cytokine pathways

280369 Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. Einsen H, Raingeaud J, Davis RJ J BIOL CHEM 1998 273 3 1741-1748

282369 Synovial fluid levels of tumour necrosis factor-α in the inflamed rat knee: Modulation by dexamethasone and inhibitors of matrix metalloproteinase and phosphodiesterase. Singh HN, Blanuzzi V, Greenwood S, Stiles JW, O'Byrne EM INFLAMMATION RES 1997 46 2 S153-S154

291135 Vertex and Kissei select VX-745 as lead p38 MAP kinase inhibitor targeting inflammatory and neurological diseases. Vertex Pharmaceuticals Inc PRESS RELEASE 1998 July 7

296038 How MAP kinases are regulated. Cobb MH, Goldsmith EJ J BIOL CHEM 1995 270 14843-14846

303458 ATP site-directed kinase inhibitors. Denny WA IDRGUS 1998 1 1 10-12
- The first published report of P450 toxic effects of SB-203580 and the first announcement of the new detoxified class of p38 inhibitors bearing a pyrimidine ring instead of pyridine.

307144 Vertex reaches milestone in p38 MAP kinase program: Lead now in formal preclinicals. EMERGING PHARMACEUTICALS 1998 7 8-13

- The authors propose that mutation of a single amino acid can be used to make any kinase sensitive to the pyridylimidazole inhibitor. Extensive mutational analysis confirmed the basis of selectivity for the pyridylimidazole class of p38 inhibitors.

317656 Vertex announces start of clinical trial with VX-745 as new drug candidate targeting inflammatory and neurological diseases. Vertex Pharmaceuticals Inc PRESS RELEASE 1999 March 09

- The X-ray crystallographic details of four inhibitor-p38 complexes are described. The complex of one of the inhibitors with ERK-2 is also described.

- The first novel report produced by Vertex scientists who discovered the 3-dimensionnal crystalline structure of p38 MAPK, which subsequently led to the screening of a wide range of potential inhibitors, the lead of which was VX-745.

346067 Vertex begins pilot phase II clinical trial of VX-745, p38 MAP kinase inhibitor for the treatment of inflammatory disease. Vertex Pharmaceuticals Inc PRESS RELEASE 1999 November 02

355006 Blocking cytokines with genes, Evans CH, Ghiwizzini C, Robbins PD J LEUKOCYTE BIOL 1998 64 1 55-61

363873 Suppression of ex vivo cytokine production by SB-242235, a selective inhibitor of (p38) MAP kinase. Fullerton T, Sharma A, Prabhabkar U, Tucci M, Boke S, Davis H, Jorkasy D, Williams W CLIN PHARMACOL THERAP 2000 67 2 OP-B4

366385 p38 MAP kinase is a key regulator of cytokine and chemokine expression in pancreatic acinar cells Gulkowsky I, Bllman TA, Mouria M, Zaninovic V, Livingston E, Pandol SJ, Gukovskaya AS GASTROENTEROL 2000 118 4 Suppl 2 Abs 899
368149 American Chemical Society 33rd Middle Atlantic Regional Meeting (Part I), Newark, DE, USA. Decicco C IDDB MEETING REPORT 2000 May 15-17

369992 American Chemical Society 33rd Middle Atlantic Regional Meeting (Part II), Newark, DE, USA. IDDB MEETING REPORT 2000 May 15-17

371548 27th National Medicinal Chemistry Symposium, Kansas City, MO, USA. Enuezie C IDDB MEETING REPORT 2000 June 13-17

• This report highlights the discovery of VX-745, the compound generated by Vertex Pharmaceuticals Incorporated as an oral, bioavailable selective inhibitor of the human enzyme p38 MAPK for the treatment of rheumatoid arthritis.

372943 Discovery of VX-745: A novel, orally bioavailable and selective p38 MAP kinase inhibitor Salituro FG, Bemis GW, German UA, Duffy JP, Galullo VP, Gao H, Harrington EM, Wilson KP, Su MSS MIDDLE ATLANTIC REGIONAL MEET ACS 2000 33rd May 15-17 Abs 39

374148 Summary of the 27th National Medicinal Chemistry Symposium, Kansas City, MO, USA. Enuezie C IDDB MEETING REPORT 2000 June 13-17

386727 Vertex expands product pipeline with selection of four new drug candidates targeting viral infections, autoimmune and inflammatory diseases, and cardiovascular disorders. Vertex Pharmaceuticals Inc PRESS RELEASE 2000 October 23

393037 The effect of inhibitors of MEK1 and p38 MAP kinase on IL-1-induced expression of matrix metalloproteinases (MMPs), chemokines and adhesion molecules in synovial fibroblasts from patients with arthritis. Lesch ME, Thiel MJ, Crofford LJ, Flory CM FASEB J 2000 14 04

395063 Vertex Pharmaceuticals announces start of phase II clinical trial of VX-745 for rheumatoid arthritis. Vertex Pharmaceuticals Inc PRESS RELEASE 2001 January 04

399818 Vertex Pharmaceuticals reports fourth quarter and full year 2000 financial results. Vertex Pharmaceuticals Inc PRESS RELEASE 2001 February 22

401955 Drug development pipeline. Vertex Pharmaceuticals Inc COMPANY COMMUNICATION 2001 March 09

407005 Vertex Pharmaceuticals reports first quarter 2001 financial results - Vertex continues to make clear progress in clinic, Vertex Pharmaceuticals Inc PRESS RELEASE 2001 April 24

408713 New targets in arthritis: Signal transduction and transcriptional regulation, Paris, France. IDDB MEETING REPORT 2001 April 25-27